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OBJECTIVES OF THIS LECTURE

By the end of this lecture, you will be able to:

• Describe the all-powerful optimization design technique: Branch & 
Bound (B&B)

• Apply B&B to designing optimality-guaranteeing algorithms for 
new optimization problems by being able to

• Derive valid approximate cost functions for new optimization 
problems, and

• Prove the validity of approximate cost functions

• Prove why B&B guarantees optimality when the approximate 
cost function used by the algorithm satisfies certain conditions
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OUTLINE
• Introduction: Universality of B&B, and when to use it or not use it

• Laying the ground word: Illustration on the Job Assignment 
Problem

• The general Branch and Bound algorithm

• Criteria for the choice of the approximate cost functions (ACF)
• Proof of why criteria-satisfying ACFs guarantee optimality of B&B solutions

• Implementation of the B&B Job Assignment algorithm 

• General rules of thumb for deriving valid ACFs
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INTRODUCTION
• B&B is a systematic method for solving optimization problems

• B&B is a rather general optimization technique that applies where the 
greedy method and dynamic programming fail

• But it is much slower: Often takes exponential time in the worst case
• So use it only if the greedy method and DP both fail to give you optimality

• However, if applied carefully, it runs reasonably fast on average.

• The general idea of B&B: 
• It is a BFS-like search for the optimal solution, in the solution space
• But not all nodes get expanded (i.e., their children generated)
• Rather, a carefully selected criterion determines which node to expand and when
• And another criterion tells the algorithm when an optimal solution has been found 
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LAYING THE GROUND WORK
-- ILLUSTRATION ON THE JOB ASSIGNMENT PROBLEM --
• The Job Assignment Problem

• Input: 𝑛𝑛 jobs, 𝑛𝑛 employees, and an 𝑛𝑛 × 𝑛𝑛 matrix 𝐴𝐴 where 𝐴𝐴𝑖𝑖𝑗𝑗 is 
the cost incurred if person 𝑖𝑖 performs job 𝑗𝑗

• Output: A one-to-one matching 𝑓𝑓 of the 𝑛𝑛 employees to the 
𝑛𝑛 jobs so that the total cost is minimized. 

• Recall that a matching is a permutation.

• Cost C of a solution 𝑓𝑓 is: 𝐶𝐶 𝑓𝑓 = ∑𝑖𝑖=1𝑛𝑛 𝐴𝐴𝑖𝑖,𝑓𝑓 𝑖𝑖

• That is, 𝐶𝐶 𝑓𝑓 = 𝐴𝐴1,𝑓𝑓 1 + 𝐴𝐴2,𝑓𝑓 2 + ⋯+ 𝐴𝐴𝑛𝑛,𝑓𝑓 𝑛𝑛
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THE JOB ASSIGNMENT PROBLEM
-- AN EXAMPLE --

• Example: 𝑛𝑛 = 3 (i.e., 3 employees and 3 jobs) and the cost matrix 

𝐴𝐴 =
2 4 5
2 7 10
5 3 7

(Recall the matrix notation:,𝐴𝐴31 = 5,𝐴𝐴23 = 10 …)

• A solution (i.e., permutation)  𝑓𝑓 = 1 2 3
2 1 3 means assigning 

employee 1 -> job 2, employee 2 -> job 1, and employee 3 -> job 3.

• A solution  is like selecting in A 3 numbers:

• One from each row

• No two numbers are in same column

CS 6212 Design and Analysis of Algorithms                                                                                    Branch and Bound

6

𝐴𝐴 =
2 4 5
2 7 10
5 3 7

C(f)=4+2+7=13



THE JOB ASSIGNMENT PROBLEM
-- BRUTE-FORCE METHOD --

• To start, we will develop a brute-force method:

• Which generates the whole solution tree, where every path 
from the root to any leaf is a solution, 

• Then we will evaluate the Cost C of each solution, and 

• Finally choose the path with the minimum cost.
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THE JOB ASSIGNMENT PROBLEM
-- BRUTE-FORCE METHOD ON THE EXAMPLE -
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X[2]=2 X[2]=3 X[2]=1 X[2]=3

X[1]=1 X[1]=2 X[1]=3

X[2]=1 X[2]=2

• Represent each permutation as X[1:3] like in Backtracking
• Generate the same solution tree (as in backtracking) but in BFS order 
• Don’t show dead-ends or invalid solutions

X[3]=2

C=15

X[3]=3

C=16

X[3]=3

C=13

X[3]=1

C=19

X[3]=2

C=10

X[3]=1

C=17

n = 3

𝐴𝐴 =
2 4 5
2 7 10
5 3 7

Optimal Solution



WHAT IS WRONG WITH BRUTE FORCE?

• Too costly

• n! solutions 

• For large n, n! is too huge and will take too much time

• B&B eliminates unpromising solutions early on

• We’ll see how
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MAIN IDEA
-- USING A PREDICTOR --

• The first idea of B&B is to develop a quantitative “predictor" of 
the likelihood of a node (in the solution tree) that it will lead to 
an optimal solution

• We denote the predictor for a node 𝑁𝑁 as 𝐶̂𝐶 𝑁𝑁

• What could that predictor be?    (in minimization problems)
• One candidate predictor is: the cost so far 

• Each tree node corresponds to a (partial) solution (from the root to 
that node)

• The cost-so-far predictor is the cost of the partial solution so far 
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THE JOB ASSIGNMENT PROBLEM
-- PREDICTOR ILLUSTRATION: COST SO FAR --

CS 6212 Design and Analysis of Algorithms                                                                                    Branch and Bound

11

Start

X[2]=2 X[2]=3 X[2]=1 X[2]=3

X[1]=1 X[1]=2 X[1]=3

X[2]=1 X[2]=2

X[3]=2

C=15

X[3]=3

C=16

X[3]=3

C=13

X[3]=1

C=19

X[3]=2

C=10

X[3]=1

C=17

n = 3

𝐴𝐴 =
2 4 5
2 7 10
5 3 7

What the cost so far 
for   ?

𝐴𝐴12 + 𝐴𝐴23 = 4 + 10 = 14



MAIN IDEA
-- HOW DOES B&B USE THE PREDICTOR --

• Instead of a blind bread-first search order of generating nodes

• B&B chooses the live node with the best predictor value

• B&B simply expands that node (i.e., generate all its children)

• The predictor value of each newly generated node is computed

• Termination criterion:

• When the best live node chosen for expansion turns out to be a final 
leaf (i.e., at level n), the algorithm terminates

• That node corresponds to the optimal solution. 

• The proof of optimality will be presented later on. 
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BB APPLIED ON THE EXAMPLE
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• Represent each permutation as X[1:3] like in Backtracking
• Generate the same solution tree in B&B order
• Show 𝐶𝐶 𝑁𝑁 for each generated node N

n = 3

𝐴𝐴 =
2 4 5
2 7 10
5 3 7

𝐶𝐶 𝑁𝑁 = 𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐 𝑠𝑠𝑠𝑠 𝑓𝑓𝑓𝑓𝑓𝑓 𝑜𝑜𝑜𝑜 𝑛𝑛𝑛𝑛𝑛𝑛𝑛𝑛 𝑁𝑁

C=10

Optimal Solution

X[1]=1 X[1]=2 X[1]=3

𝐶𝐶 = 2 𝐶𝐶 = 4 𝐶𝐶 = 5

X[2]=2 X[2]=3
𝐶𝐶 = 12𝐶𝐶 = 9

X[2]=1 X[2]=3
𝐶𝐶 = 6 𝐶𝐶 = 14

X[2]=1 X[2]=2

𝐶𝐶 = 7 𝐶𝐶 = 12

X[3]=3
𝐶𝐶 = 13

X[3]=2
𝐶𝐶 = 10

X[3]=3
𝐶𝐶 = 16

Live Nodes:  all 3 nodes in Level 1
Live Nodes: X[2]=2, X[2]=3, X[1]=2, X[1]=3

Live Nodes: X[2]=2, X[2]=3, X[2]=1, X[2]=3, X[1]=3
Live Nodes: all 6 nodes in Level 2

Live Nodes: X[2]=2, X[2]=3, X[3]=3, X[2]=3, X[2]=1, X[2]=2
Live Nodes: X[2]=2, X[2]=3, X[3]=3, X[2]=3, X[3]=2, X[2]=2

Live Nodes: X[3]=3, X[2]=3, X[3]=3, X[2]=3, X[3]=2, X[2]=2



TERMINOLOGY

• A live node: a temporary leaf, i.e., a node whose children 
have not been generated

• A dead node:  a node whose children have been generated

• Expanding node (or E-node): The node selected to be 
expanded, i.e., the live node with best predictor value 

• An answer node: a node that corresponds to a complete 
solution (i.e., a node at the bottom level)

• A predictor is referred to as approximate cost function, and 
denoted �𝑪𝑪
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LESSONS LEARNED SO FAR

• B&B searches the solution space (tree) in a BSF-like order

• To speed up the search, it uses a predictor (the approximate 
cost function) to estimate how likely a tree node will lead to an 
optimal solution, and uses the predictor to know which node 
to expand next

• The cost so far predictor is OK, leads to some savings, but 
better predictors are needed

• More lessons to come
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OBSERVATIONS

• B&B “seems” to find the optimal solution 

• B&B with the cost-so-far 𝐶̂𝐶 does save on the solution tree

• But the savings are not impressive

• Can it be made faster (i.e., more savings/bounding) if we use 
a better 𝐶̂𝐶?

• Other questions that will be addressed a little later:
• Would all 𝐶̂𝐶 work (i.e., lead to an optimal solution)?

• If not, how would we know which 𝐶̂𝐶 works?

• How would we know which 𝐶̂𝐶 is better than another?
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A BETTER 𝐶̂𝐶

• The previous 𝐶̂𝐶 relies entirely on “past” performance to 
predict future performance

• While the past is usually a good indicator, using additional 
knowledge about the situation can improve predictions 
(make fewer errors)

• Take 𝐶̂𝐶(𝑁𝑁) = cost so far +∑𝑖𝑖=𝑘𝑘+1𝑛𝑛 𝑚𝑚𝑖𝑖, where 𝑘𝑘 is the level of 
node 𝑁𝑁, and 𝑚𝑚𝑖𝑖 is the minimum of row 𝑖𝑖

• In the example, 𝑚𝑚1 = 2,𝑚𝑚2 = 2,𝑚𝑚3 = 3

CS 6212 Design and Analysis of Algorithms                                                                                    Branch and Bound

17



BB APPLIED ON THE EXAMPLE
-- USING THE SECOND �𝑪𝑪 --
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• Represent each permutation as X[1:3] like in Backtracking
• Generate the same solution tree in B&B order
• Show 𝐶𝐶 𝑁𝑁 for each generated node N

𝐴𝐴 =
2 4 5
2 7 10
5 3 7

, m1 = m2 = 2, m3 = 3

𝐶𝐶 𝑁𝑁 = csf + �
𝑖𝑖=𝑘𝑘+1

𝑛𝑛

𝑚𝑚𝑖𝑖

C=10

Optimal Solution

X[1]=1 X[1]=2 X[1]=3

𝐶𝐶 = 7 𝐶𝐶 = 9 𝐶𝐶 = 10

X[2]=2 X[2]=3
𝐶𝐶 = 15𝐶𝐶 = 12

X[2]=1 X[2]=3
𝐶𝐶 = 9 𝐶𝐶 = 17

X[2]=1 X[2]=2

𝐶𝐶 = 10 𝐶𝐶 = 15

X[3]=3
𝐶𝐶 = 13

X[3]=2
𝐶𝐶 = 10

Live Nodes:  all 3 nodes in Level 1
Live Nodes: X[2]=2, X[2]=3, X[1]=2, X[1]=3

Live Nodes: X[2]=2, X[2]=3, X[2]=1, X[2]=3, X[1]=3
Live Nodes: X[2]=2, X[2]=3, X[3]=3, X[2]=3, X[1]=3

Live Nodes: X[2]=2, X[2]=3, X[3]=3, X[2]=3, X[2]=1, X[2]=2
Live Nodes: X[2]=2, X[2]=3, X[3]=3, X[2]=3, X[3]=2, X[2]=2



OBSERVATIONS

• B&B found the optimal solution faster with the 2nd 𝐶̂𝐶

• That indicates that there can be better 𝐶̂𝐶’s

• Can it be made faster with a better 𝐶̂𝐶?

• Yes: Observe that the 2nd 𝐶̂𝐶 ignored column conflicts in its 𝑚𝑚𝑖𝑖’s

• Let’s create a 3rd 𝐶̂𝐶 that doesn’t ignore column conflicts:

• Take 𝐶̂𝐶(𝑁𝑁) = cost so far +∑𝑖𝑖=𝑘𝑘+1𝑛𝑛 𝑝𝑝𝑖𝑖, where 
• 𝑘𝑘 is the level of node 𝑁𝑁,  
• 𝑝𝑝𝑖𝑖 is the minimum of row 𝑖𝑖 such that 𝑝𝑝𝑖𝑖 is not in the column of 

any of the terms chosen in the partial solution up to node 𝑁𝑁
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BB APPLIED ON THE EXAMPLE
-- USING THE THIRD �𝑪𝑪 --
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Start

• Represent each permutation as X[1:3] like in Backtracking
• Generate the same solution tree in B&B order
• Show 𝐶𝐶 𝑁𝑁 for each generated node N

𝐴𝐴 =
2 4 5
2 7 10
5 3 7

,

𝐶𝐶 𝑁𝑁 = csf + �
𝑖𝑖=𝑘𝑘+1

𝑛𝑛

𝑝𝑝𝑖𝑖 , 𝑝𝑝𝑖𝑖 ∉ 𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐(𝑁𝑁)

C=10

Optimal Solution

X[1]=1 X[1]=2 X[1]=3
𝐶𝐶 = 12 𝐶𝐶 = 11 𝐶𝐶 = 10

X[2]=1 X[2]=2

𝐶𝐶 = 10 𝐶𝐶 = 17

X[3]=2
𝐶𝐶 = 10

Live Nodes:  all 3 nodes in Level 1

Live Nodes: X[1]=1, X[1]=2, X[2]=1, X[2]=2

Live Nodes: X[1]=1, X[1]=2, X[3]=2, X[2]=2

𝐶𝐶 = A11 + p2 + p3
𝑝𝑝2 = min 𝑟𝑟𝑟𝑟𝑟𝑟 2 𝑛𝑛𝑛𝑛𝑛𝑛 𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓 𝑐𝑐𝑐𝑐𝑐𝑐 1 = 7
𝑝𝑝3 = min 𝑟𝑟𝑟𝑟𝑟𝑟 3 𝑛𝑛𝑛𝑛𝑛𝑛 𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓 𝑐𝑐𝑐𝑐𝑐𝑐 1 = 3
𝐶𝐶 =2+7+3=12

𝐶𝐶 = A13 + A21 + p3
𝑝𝑝3 = min 𝑟𝑟𝑟𝑟𝑟𝑟 3 𝑛𝑛𝑛𝑛𝑛𝑛 𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓 𝑐𝑐𝑐𝑐𝑐𝑐𝑠𝑠 3 𝑎𝑎𝑎𝑎𝑎𝑎 1 = 3
𝐶𝐶 =5+2+3=10



OBSERVATIONS

• B&B found the optimal solution much faster with the 3rd 𝐶̂𝐶

• That is further evidence that better 𝐶̂𝐶’s get us to optimal 
solution faster

• The more “compliant” with the constraints 𝐶̂𝐶 is, the better it 
seems to be
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LESSONS LEARNED SO FAR

• B&B searches the solution space (tree) in a BSF-like order

• To speed up the search, it uses a predictor to estimate how likely a 
tree node will lead to an optimal solution, and uses the predictor to 
know which node to expand next

• The cost-so-far predictor is OK

• There can be many predictors: some better than others

• Predictors need not comply with the constraints of the solution

• But the closer a predictor is to compliance, the faster it gets us to 
the optimal solution

• More lessons to come
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THE GENERAL B&B ALGORITHM
-- SOME POINTS TO KEEP IN MIND FIRST --

• Each solution of the problem is assumed to be expressible as 
an array X[1:n] (as was seen in Backtracking).

• An approximate cost function 𝐶̂𝐶 is assumed to have been 
defined
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THE GENERAL B&B ALGORITHM
-- THE PSEUDO-CODE--
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Procedure B&B()
begin

E: nodepointer;
E := new (node); // the root (start) node     
H: heap; //A heap for all the live nodes
while (true) do 

if (E is a final leaf) then
// E is an optimal solution
print out the path from E to root;
return;

endif
Expand(E); // E is not an answer node
if (H is empty) then

report that there is no solution;
return;

endif
E := delete-min(H); // next E-node

endwhile
end

• The specifics of Expand(E) vary from 
problem to problem, and depend on your 
choice of 𝐶𝐶

• The heap is a min-heap for minimization 
problems, but a max-heap for 
maximization problems (more on 
maximization later)

Procedure Expand(E)
begin

1. Generate all the children of E;
2. Compute the 𝐶𝐶 of each child;
3. Insert each child into the heap H;

end



CRITERIA FOR THE CHOICE OF 
THE APPROXIMATE COST FUNCTIONS 𝐶̂𝐶 (1/2)

• Definition of the cost function 𝑪𝑪: For every node 𝑁𝑁 in the 
solution tree, the cost function 𝑪𝑪(𝑵𝑵) is the cost of the best 
solution that goes through node 𝑁𝑁.

• Notes:
• Be careful to distinguish between the “cost function” 𝐶𝐶 and the 

“approximate cost function” 𝐶̂𝐶
• 𝐶𝐶(N) will not be computed. It is only a theoretical, mathematical 

quantity to be used for analysis, proof, and “inspiration” for 
deriving good 𝐶̂𝐶’s
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CRITERIA FOR THE CHOICE OF 
THE APPROXIMATE COST FUNCTIONS 𝐶̂𝐶 (2/2)

• Theorem: In the case of minimization problems, if 𝐶̂𝐶 satisfies the following two validity criteria:
1) 𝐶𝐶 𝑁𝑁 ≤ 𝐶𝐶 𝑁𝑁 for every node 𝑁𝑁, and 

2) 𝐶𝐶 𝑁𝑁 = 𝐶𝐶 𝑁𝑁 for every answer node (final leaf) node 𝑁𝑁, 

then the first expanding node (best-𝐶̂𝐶 node) that happens to be a final leaf corresponds to an 
optimal solution.

• Proof:
a. Assume 𝐶𝐶 satisfies the two conditions of the theorem
b. Let 𝐸𝐸 be the E-node that happens to be a final leaf (where B&B algorithm stops)
c. Need to prove that 𝑪𝑪 𝑬𝑬 ≤ 𝑪𝑪 𝑵𝑵 for every live node 𝑁𝑁
d. 𝐶𝐶 𝐸𝐸 = 𝐶𝐶(𝐸𝐸) by condition (2) of the theorem and because E is a final leaf
e. 𝐶𝐶 𝐸𝐸 ≤ 𝐶𝐶(𝑁𝑁) for every live node 𝑁𝑁, because 𝐸𝐸 is the expanding node, that is, the minimum-𝐶𝐶 node 

at the moment it is chosen (recall that the algorithm chooses E to be the the minimum-𝐶𝐶 node)
f. 𝐶𝐶 𝑁𝑁 ≤ 𝐶𝐶 𝑁𝑁 for every node 𝑁𝑁 (and thus for every live node) by condition (1) of the theorem 
g. Therefore, 𝐶𝐶 𝐸𝐸 = 𝐶𝐶 𝐸𝐸 ≤ 𝐶𝐶 𝑁𝑁 ≤ 𝐶𝐶 𝑁𝑁 for every live node𝑁𝑁, (by d, e and f, respectively)
h. Therefore, 𝑪𝑪 𝑬𝑬 ≤ 𝑪𝑪 𝑵𝑵 . Q.E.D. 
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Since 𝐶𝐶 𝑁𝑁 ≤ 𝐶𝐶 𝑁𝑁 , we say that 
𝐶𝐶 is an underestimate of 𝐶𝐶



OPTIMALITY OF THE B&B SOLUTION

• If 𝐶̂𝐶 satisfies the following two validity criteria, then the B&B algorithm 
solution is optimal 

• That is because it returns the solution corresponding to the first 
expanding node (best-𝐶̂𝐶 node) that happens to be a final leaf 

• By last theorem, that solution is optimal

• Therefore, to design an optimality-guaranteeing B&B algorithm, simply 
derive and use in the B&B algorithm a 𝐶̂𝐶 that satisfies the two validity 
criteria

• So, the crux of the design process is 
• the derivation of a 𝐶𝐶, and 

• the proof that it satisfies the two validity criteria
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THE COST FUNCTION C(N)
OF THE JOB ASSIGNMENT PROBLEM

• Let 𝑁𝑁 be a node at level 𝑘𝑘, and X 1:𝑘𝑘 be the first 𝑘𝑘 entries 
assigned on the path from the root to node 𝑁𝑁 in the solution tree

• 𝐶𝐶 𝑁𝑁 = the cost of the best (min) solution that goes through node 𝑁𝑁

• 𝐶𝐶 𝑁𝑁 = cost so far + the cost of the best (min) continuation from 𝑁𝑁

• 𝐶𝐶 𝑁𝑁 = ∑𝑖𝑖=1𝑘𝑘 𝐴𝐴𝑖𝑖,𝑋𝑋 𝑖𝑖 +
min ∑𝑖𝑖=𝑘𝑘+1𝑛𝑛 𝐴𝐴𝑖𝑖,𝑋𝑋 𝑖𝑖 for all possible valid fillings of X[𝑘𝑘+ 1:𝑛𝑛]}

• Computing the min in the 2nd part of 𝐶𝐶 𝑁𝑁 is very costly because 
the number of entities to minimize over is exponential

• But, in any case, the B&B algorithm doesn’t use 𝐶𝐶 𝑁𝑁
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EXERCISES

• Exercise 1: Prove that the first 𝐶̂𝐶 we defined for the Job 
Assignment Problem satisfies the two conditions of the theorem.

• Exercise 2: Prove that the second 𝐶̂𝐶 we defined for the Job 

Assignment Problem satisfies the two conditions of the theorem.

• Exercise 3: Prove that the third 𝐶̂𝐶 we defined for the Job 
Assignment Problem satisfies the two conditions of the theorem.

• Hint: Use the expression of 𝐶𝐶 𝑁𝑁 in the previous slide
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IMPLEMENTATION OF THE B&B JOB 
ASSIGNMENT ALGORITHM (1)

• We saw that the B&B algorithm needs an Expand procedure that 
depends on the problem and on the choice of the 𝐶̂𝐶

• We need to 

• define the full record of a node, and

• fully implement the Expand procedure
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Procedure Expand(E)
begin

1. Generate all the children of E;
2. Compute the 𝐶𝐶 of each child;
3. Insert each child into the heap H;

end



IMPLEMENTATION OF THE B&B JOB 
ASSIGNMENT ALGORITHM (2)

• Node record:

• Every node corresponds to something like X[i]=j, which signifies that 
employee i is assigned to job j

• Every node must store its 𝐶̂𝐶 value

• Every node must point to its parent so that 

• when an optimal leaf is found, 

the path from that leaf to the 

root can be traced and printed 

out as the optimal solution
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Record node
begin

parent: nodepointer; 
i: integer; // employee i;  X[i]=j   
j: integer; // job j assigned to person i
cHat: real;

end

Start

X[1]=1 X[1]=2 X[1]=3
𝐶𝐶 = 12 𝐶𝐶 = 11 𝐶𝐶 = 10

X[2]=1 X[2]=2
𝐶𝐶 = 10 𝐶𝐶 = 17

X[3]=2
𝐶𝐶 = 10



IMPLEMENTATION OF THE B&B JOB 
ASSIGNMENT ALGORITHM (3)

• Let’s use the second 𝐶̂𝐶
• 𝐶̂𝐶(𝑁𝑁) = cost so far +∑𝑖𝑖=𝑘𝑘+1

𝑛𝑛 𝑚𝑚𝑖𝑖, where 𝑘𝑘 is the level of node 𝑁𝑁, and 𝑚𝑚𝑖𝑖 is the 
minimum of row 𝑖𝑖 of the cost matrix 𝐴𝐴

• Observe that if 𝑁𝑁 is a pointer to a node, then

𝑁𝑁. 𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐 = 𝑁𝑁.𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝. 𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐 + 𝐴𝐴[𝑁𝑁. 𝑖𝑖,𝑁𝑁. 𝑗𝑗] −𝑚𝑚𝑁𝑁.𝑖𝑖

• It should be easy to write a piece of code that finds the minimum 

𝑚𝑚𝑖𝑖 for row 𝑖𝑖, for all 𝑖𝑖 (that is a little exercise for you)

• So assume we have the 𝑚𝑚𝑖𝑖’s
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IMPLEMENTATION OF THE B&B JOB 
ASSIGNMENT ALGORITHM (4)
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Procedure Expand(in: E, A[1:n,1:n], m[1:n]; in/out: H)   // m is assumed computed; H is the heap
begin

S[1:n]: Boolean; // S is a bitmap set initialized to 0. It’ll contain all the jobs that have been
// assigned by the partial path from the root to E 

N,  p: nodepointer;
p := E;
while (p is not the root) do // walk from E to root finding the assigned jobs 

S[p.j] := 1;  // job p.j has already been assigned (to employee p.i)
p := p.parent;

endwhile
for j=1 to n do

if S[j] = 0 then // job j unassigned, and so a new child of E will be created for it
N := new (node); // a new child node for person E.i+1 and job j
N.i := E.i + 1; N.j := j; N.parent:= E;
N.cHat = E.cHat + A[N.i,N.j]  - m[N.i];
Insert(N,H); // insert N into heap H

endif
endfor

end

Start

X[1]=1 X[1]=2 X[1]=3
𝐶̂𝐶 = 12 𝐶̂𝐶 = 11 𝐶̂𝐶 = 10

X[2]=1 X[2]=2
𝐶̂𝐶 = 10 𝐶̂𝐶 = 17

X[3]=2
𝐶̂𝐶 = 10



EXERCISES

• Exercise 4: Give an Expand procedure for the third 𝐶̂𝐶 of the Job 
Assignment problem
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HOW TO FIND A GOOD 𝐶̂𝐶
-- A RULE OF THUMB --

1. Express 𝐶𝐶(𝑁𝑁) mathematically (recall that 𝐶𝐶(𝑁𝑁) is the cost of the min-cost constraints-
compliant solution that goes through 𝑁𝑁)

2. Relax some of the constraints (as little as possible)  for the continuation of the 
solution from node 𝑁𝑁, and compute a new 𝐶𝐶(𝑁𝑁) under the new relaxed constraints

3. Take 𝐶𝐶 to be the new 𝐶𝐶(𝑁𝑁)

• Notes: 
• You need to relax the constraints enough so that the new 𝐶𝐶(𝑁𝑁) can be computed fast
• But don’t relax too much because the closer 𝐶̂𝐶 is to the original 𝐶𝐶, the fewer nodes need to be 

generated in the solution tree, and vice versa
• Because 𝐶𝐶(𝑁𝑁) is the min-cost under tighter constraints, and 𝐶̂𝐶(𝑁𝑁) is the min-cost under loser 

constraints, 𝐶𝐶 𝑁𝑁 ≤ 𝐶𝐶(𝑁𝑁), satisfying validity criterion (1) 
• Because at answer nodes (i.e., final leaves) E there is only one solution that goes through E,  
𝐶𝐶 𝐸𝐸 = 𝐶𝐶(𝐸𝐸), satisfying validity criterion (2) 

• Therefore, the rule of thumb given above guarantees a valid 𝐶̂𝐶

CS 6212 Design and Analysis of Algorithms                                                                                    Branch and Bound

35



B&B FOR MAXIMIZATION PROBLEMS

• In the case of maximization problems
• there is a profit (instead of cost) associated with each solution, and 

• we are interested in finding the solution corresponding to the maximum profit

• Instead of cost function 𝐶𝐶 and approximate cost function 𝐶̂𝐶, we talk about profit 
function 𝑃𝑃 and approximate profit function �𝑃𝑃

• The theorem will have to be slightly modified so the validity criteria become
1) �𝑃𝑃 𝑁𝑁 ≥ 𝑃𝑃 𝑁𝑁 for every node 𝑁𝑁, and 

2) �𝑃𝑃 𝑁𝑁 = 𝑃𝑃 𝑁𝑁 for every answer node (final leaf) node 𝑁𝑁

• The same rule of thumb applies for deriving �𝑃𝑃 𝑁𝑁 from 𝑃𝑃 𝑁𝑁 , by relaxing the 
constraints as little as possible to make the computation of 𝑃𝑃 𝑁𝑁 fast
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�𝑃𝑃 𝑁𝑁 is called an 
overestimate of 𝑃𝑃 𝑁𝑁



LESSONS LEARNED SO FAR
• B&B searches the solution space (tree) in a modified BSF order

• To speed up the search, B&B uses a predictor 𝐶̂𝐶 to estimate the promise of a node, and 
always selects the min-𝐶̂𝐶 live node to expand next

• The cost-so-far 𝐶̂𝐶 is OK, and many predictors 𝐶̂𝐶 exist: some better than others

• 𝐶̂𝐶 need not comply with the constraints of the solution

• The closer 𝐶̂𝐶 is to 𝐶𝐶, the faster it gets to the optimal solution

• If 𝐶̂𝐶 satisfies two validity criteria, then B&B yields an optimal solution

• To derive a provably valid 𝐶̂𝐶,  set 𝐶̂𝐶 = the cost function 𝐶𝐶 under relaxed constraints

• B&B is an algorithm, not a template

• To design a B&B algorithm for a problem, express 𝐶𝐶, derive from it a 𝐶̂𝐶, prove the two 
validity criteria for your 𝐶̂𝐶, and implement the Expand procedure

• Maximization B&B works similarly: Replace cost by profit, ≤ by ≥, min by max, and min-
heap by max-heap
CS 6212 Design and Analysis of Algorithms                                                                                    Branch and Bound

37

1) 𝐶𝐶 𝑁𝑁 ≤ 𝐶𝐶 𝑁𝑁 ∀ node 𝑁𝑁,
2) 𝐶𝐶 𝑁𝑁 = 𝐶𝐶 𝑁𝑁 ∀ final leaf 𝑁𝑁

Relax the constraints just enough to make 𝐶𝐶
computation fast enough (polynomial)



A MAXIMIZATION APPLICATION OF B&B
-- THE 0/1 KNAPSACK PROBLEM --

• Input: 
• Items: 1, 2, 3, … , n
• Weights: 𝑊𝑊1 𝑊𝑊2 𝑊𝑊3 … , 𝑊𝑊𝑛𝑛

• Prices: 𝑃𝑃1 𝑃𝑃2 𝑃𝑃3 … , 𝑃𝑃𝑛𝑛
• Capacity: 𝐶𝐶

• Output: Which items to take (in whole) such that the total of the taken weights is ≤ 𝐶𝐶, 
and the total of the prices of the taken items is maximized.

More formally:
• ∀𝑖𝑖, let 𝑥𝑥𝑖𝑖 = 1 if item 𝑖𝑖 is taken, 0 0therwise. 
• Output: Find 𝑥𝑥1 , 𝑥𝑥2, … ,𝑥𝑥𝑛𝑛 to maximize Σ𝑖𝑖=1

𝑛𝑛 𝑥𝑥𝑖𝑖𝑃𝑃𝑖𝑖 such that Σ𝑖𝑖=1
𝑛𝑛 𝑥𝑥𝑖𝑖𝑊𝑊𝑖𝑖 ≤ 𝐶𝐶

• Task:  Write a B&B algorithm for solving this problem  
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𝑃𝑃𝑖𝑖 is the price of the 
whole item 𝑖𝑖, not the 
price per pound



A MAXIMIZATION APPLICATION OF B&B
-- THE 0/1 KNAPSACK PROBLEM --

• The profit function 𝑃𝑃(𝑁𝑁) ≝ the profit of the best solution that goes thru node 𝑁𝑁

• 𝑃𝑃(𝑁𝑁) = (the profit so far) + (the best 0/1 profit that can be gained from the remaining 
items 𝑘𝑘 + 1, 𝑘𝑘 + 2, … ,𝑛𝑛)

• To derive an approximate profit function �𝑃𝑃 𝑁𝑁 , relax the 0/1 constraint in 
(the best 0/1 profit that can be gained from the remaining items 𝑘𝑘 + 1,𝑘𝑘 + 2, … ,𝑛𝑛 ) 

into the regular knapsack constraint (where you can take fractions of items)

• Then, the relaxed 𝑃𝑃(𝑁𝑁) = (the profit so far) + (the best regular knapsack profit that can 
be gained from the remaining items 𝑘𝑘 + 1,𝑘𝑘 + 2, … , 𝑛𝑛)

• Take �𝑃𝑃 𝑁𝑁 = the relaxed 𝑃𝑃(𝑁𝑁) = (profit so far) + (the greedy solution of the regular 
knapsack problem for the remaining items 𝑘𝑘 + 1,𝑘𝑘 + 2, … ,𝑛𝑛 where the capacity is the 
remaining capacity), where 𝑁𝑁 is a node at level 𝑘𝑘.

• Since �𝑃𝑃 is derived using the relaxation rule,  it is easy to prove that it satisfies the 2 
validity criteria for maximization
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The greedy solution is fast to compute, 
so it is fast to compute �𝑃𝑃 𝑁𝑁



OTHER APPLICATIONS OF B&B
-- IN AI, AND IN NEAR-OPTIMIZATION --

• B&B is used heavily in classical Artificial Intelligence, under a 
different name: the A* algorithm

• When an optimal solution is costly to find, near-optimal solutions 
may be adequate. Different methods can be used to find near-
optimal (or sub-optimal) solutions:

• The Greedy method (fast but solution may not be good enough)

• B&B, stopping when solution is good enough or when a pre-set time 
limit expires 

• This solution can be better (closer to optimal) than the greedy solution

• This approach allows for progressively better solutions with more 
execution time
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