
CS 6212 DESIGN AND
ANALYSIS OF
ALGORITHMS

LECTURE: BRANCH AND BOUND

Instructor: Abdou Youssef

CS 6212 Design and Analysis of Algorithms Branch and Bound

1

OBJECTIVES OF THIS LECTURE

By the end of this lecture, you will be able to:

• Describe the all-powerful optimization design technique: Branch &
Bound (B&B)

• Apply B&B to designing optimality-guaranteeing algorithms for
new optimization problems by being able to

• Derive valid approximate cost functions for new optimization
problems, and

• Prove the validity of approximate cost functions

• Prove why B&B guarantees optimality when the approximate
cost function used by the algorithm satisfies certain conditions

CS 6212 Design and Analysis of Algorithms Branch and Bound

2

OUTLINE
• Introduction: Universality of B&B, and when to use it or not use it

• Laying the ground word: Illustration on the Job Assignment
Problem

• The general Branch and Bound algorithm

• Criteria for the choice of the approximate cost functions (ACF)
• Proof of why criteria-satisfying ACFs guarantee optimality of B&B solutions

• Implementation of the B&B Job Assignment algorithm

• General rules of thumb for deriving valid ACFs

CS 6212 Design and Analysis of Algorithms Branch and Bound

3

INTRODUCTION
• B&B is a systematic method for solving optimization problems

• B&B is a rather general optimization technique that applies where the
greedy method and dynamic programming fail

• But it is much slower: Often takes exponential time in the worst case
• So use it only if the greedy method and DP both fail to give you optimality

• However, if applied carefully, it runs reasonably fast on average.

• The general idea of B&B:
• It is a BFS-like search for the optimal solution, in the solution space
• But not all nodes get expanded (i.e., their children generated)
• Rather, a carefully selected criterion determines which node to expand and when
• And another criterion tells the algorithm when an optimal solution has been found

CS 6212 Design and Analysis of Algorithms Branch and Bound

4

LAYING THE GROUND WORK
-- ILLUSTRATION ON THE JOB ASSIGNMENT PROBLEM --
• The Job Assignment Problem

• Input: 𝑛𝑛 jobs, 𝑛𝑛 employees, and an 𝑛𝑛 × 𝑛𝑛 matrix 𝐴𝐴 where 𝐴𝐴𝑖𝑖𝑗𝑗 is
the cost incurred if person 𝑖𝑖 performs job 𝑗𝑗

• Output: A one-to-one matching 𝑓𝑓 of the 𝑛𝑛 employees to the
𝑛𝑛 jobs so that the total cost is minimized.

• Recall that a matching is a permutation.

• Cost C of a solution 𝑓𝑓 is: 𝐶𝐶 𝑓𝑓 = ∑𝑖𝑖=1𝑛𝑛 𝐴𝐴𝑖𝑖,𝑓𝑓 𝑖𝑖

• That is, 𝐶𝐶 𝑓𝑓 = 𝐴𝐴1,𝑓𝑓 1 + 𝐴𝐴2,𝑓𝑓 2 + ⋯+ 𝐴𝐴𝑛𝑛,𝑓𝑓 𝑛𝑛

CS 6212 Design and Analysis of Algorithms Branch and Bound

5

THE JOB ASSIGNMENT PROBLEM
-- AN EXAMPLE --

• Example: 𝑛𝑛 = 3 (i.e., 3 employees and 3 jobs) and the cost matrix

𝐴𝐴 =
2 4 5
2 7 10
5 3 7

(Recall the matrix notation:,𝐴𝐴31 = 5,𝐴𝐴23 = 10 …)

• A solution (i.e., permutation) 𝑓𝑓 = 1 2 3
2 1 3 means assigning

employee 1 -> job 2, employee 2 -> job 1, and employee 3 -> job 3.

• A solution is like selecting in A 3 numbers:

• One from each row

• No two numbers are in same column

CS 6212 Design and Analysis of Algorithms Branch and Bound

6

𝐴𝐴 =
2 4 5
2 7 10
5 3 7

C(f)=4+2+7=13

THE JOB ASSIGNMENT PROBLEM
-- BRUTE-FORCE METHOD --

• To start, we will develop a brute-force method:

• Which generates the whole solution tree, where every path
from the root to any leaf is a solution,

• Then we will evaluate the Cost C of each solution, and

• Finally choose the path with the minimum cost.

CS 6212 Design and Analysis of Algorithms Branch and Bound

7

THE JOB ASSIGNMENT PROBLEM
-- BRUTE-FORCE METHOD ON THE EXAMPLE -

CS 6212 Design and Analysis of Algorithms Branch and Bound

8

Start

X[2]=2 X[2]=3 X[2]=1 X[2]=3

X[1]=1 X[1]=2 X[1]=3

X[2]=1 X[2]=2

• Represent each permutation as X[1:3] like in Backtracking
• Generate the same solution tree (as in backtracking) but in BFS order
• Don’t show dead-ends or invalid solutions

X[3]=2

C=15

X[3]=3

C=16

X[3]=3

C=13

X[3]=1

C=19

X[3]=2

C=10

X[3]=1

C=17

n = 3

𝐴𝐴 =
2 4 5
2 7 10
5 3 7

Optimal Solution

WHAT IS WRONG WITH BRUTE FORCE?

• Too costly

• n! solutions

• For large n, n! is too huge and will take too much time

• B&B eliminates unpromising solutions early on

• We’ll see how

CS 6212 Design and Analysis of Algorithms Branch and Bound

9

MAIN IDEA
-- USING A PREDICTOR --

• The first idea of B&B is to develop a quantitative “predictor" of
the likelihood of a node (in the solution tree) that it will lead to
an optimal solution

• We denote the predictor for a node 𝑁𝑁 as 𝐶̂𝐶 𝑁𝑁

• What could that predictor be? (in minimization problems)
• One candidate predictor is: the cost so far

• Each tree node corresponds to a (partial) solution (from the root to
that node)

• The cost-so-far predictor is the cost of the partial solution so far

CS 6212 Design and Analysis of Algorithms Branch and Bound

10

THE JOB ASSIGNMENT PROBLEM
-- PREDICTOR ILLUSTRATION: COST SO FAR --

CS 6212 Design and Analysis of Algorithms Branch and Bound

11

Start

X[2]=2 X[2]=3 X[2]=1 X[2]=3

X[1]=1 X[1]=2 X[1]=3

X[2]=1 X[2]=2

X[3]=2

C=15

X[3]=3

C=16

X[3]=3

C=13

X[3]=1

C=19

X[3]=2

C=10

X[3]=1

C=17

n = 3

𝐴𝐴 =
2 4 5
2 7 10
5 3 7

What the cost so far
for ?

𝐴𝐴12 + 𝐴𝐴23 = 4 + 10 = 14

MAIN IDEA
-- HOW DOES B&B USE THE PREDICTOR --

• Instead of a blind bread-first search order of generating nodes

• B&B chooses the live node with the best predictor value

• B&B simply expands that node (i.e., generate all its children)

• The predictor value of each newly generated node is computed

• Termination criterion:

• When the best live node chosen for expansion turns out to be a final
leaf (i.e., at level n), the algorithm terminates

• That node corresponds to the optimal solution.

• The proof of optimality will be presented later on.

CS 6212 Design and Analysis of Algorithms Branch and Bound

12

Live node =
temporary leaf

BB APPLIED ON THE EXAMPLE

CS 6212 Design and Analysis of Algorithms Branch and Bound

13

Start

• Represent each permutation as X[1:3] like in Backtracking
• Generate the same solution tree in B&B order
• Show 𝐶𝐶 𝑁𝑁 for each generated node N

n = 3

𝐴𝐴 =
2 4 5
2 7 10
5 3 7

𝐶𝐶 𝑁𝑁 = 𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐 𝑠𝑠𝑠𝑠 𝑓𝑓𝑓𝑓𝑓𝑓 𝑜𝑜𝑜𝑜 𝑛𝑛𝑛𝑛𝑛𝑛𝑛𝑛 𝑁𝑁

C=10

Optimal Solution

X[1]=1 X[1]=2 X[1]=3

𝐶𝐶 = 2 𝐶𝐶 = 4 𝐶𝐶 = 5

X[2]=2 X[2]=3
𝐶𝐶 = 12𝐶𝐶 = 9

X[2]=1 X[2]=3
𝐶𝐶 = 6 𝐶𝐶 = 14

X[2]=1 X[2]=2

𝐶𝐶 = 7 𝐶𝐶 = 12

X[3]=3
𝐶𝐶 = 13

X[3]=2
𝐶𝐶 = 10

X[3]=3
𝐶𝐶 = 16

Live Nodes: all 3 nodes in Level 1
Live Nodes: X[2]=2, X[2]=3, X[1]=2, X[1]=3

Live Nodes: X[2]=2, X[2]=3, X[2]=1, X[2]=3, X[1]=3
Live Nodes: all 6 nodes in Level 2

Live Nodes: X[2]=2, X[2]=3, X[3]=3, X[2]=3, X[2]=1, X[2]=2
Live Nodes: X[2]=2, X[2]=3, X[3]=3, X[2]=3, X[3]=2, X[2]=2

Live Nodes: X[3]=3, X[2]=3, X[3]=3, X[2]=3, X[3]=2, X[2]=2

TERMINOLOGY

• A live node: a temporary leaf, i.e., a node whose children
have not been generated

• A dead node: a node whose children have been generated

• Expanding node (or E-node): The node selected to be
expanded, i.e., the live node with best predictor value

• An answer node: a node that corresponds to a complete
solution (i.e., a node at the bottom level)

• A predictor is referred to as approximate cost function, and
denoted �𝑪𝑪

CS 6212 Design and Analysis of Algorithms Branch and Bound

14

LESSONS LEARNED SO FAR

• B&B searches the solution space (tree) in a BSF-like order

• To speed up the search, it uses a predictor (the approximate
cost function) to estimate how likely a tree node will lead to an
optimal solution, and uses the predictor to know which node
to expand next

• The cost so far predictor is OK, leads to some savings, but
better predictors are needed

• More lessons to come

CS 6212 Design and Analysis of Algorithms Branch and Bound

15

OBSERVATIONS

• B&B “seems” to find the optimal solution

• B&B with the cost-so-far 𝐶̂𝐶 does save on the solution tree

• But the savings are not impressive

• Can it be made faster (i.e., more savings/bounding) if we use
a better 𝐶̂𝐶?

• Other questions that will be addressed a little later:
• Would all 𝐶̂𝐶 work (i.e., lead to an optimal solution)?

• If not, how would we know which 𝐶̂𝐶 works?

• How would we know which 𝐶̂𝐶 is better than another?

CS 6212 Design and Analysis of Algorithms Branch and Bound

16

A BETTER 𝐶̂𝐶

• The previous 𝐶̂𝐶 relies entirely on “past” performance to
predict future performance

• While the past is usually a good indicator, using additional
knowledge about the situation can improve predictions
(make fewer errors)

• Take 𝐶̂𝐶(𝑁𝑁) = cost so far +∑𝑖𝑖=𝑘𝑘+1𝑛𝑛 𝑚𝑚𝑖𝑖, where 𝑘𝑘 is the level of
node 𝑁𝑁, and 𝑚𝑚𝑖𝑖 is the minimum of row 𝑖𝑖

• In the example, 𝑚𝑚1 = 2,𝑚𝑚2 = 2,𝑚𝑚3 = 3

CS 6212 Design and Analysis of Algorithms Branch and Bound

17

BB APPLIED ON THE EXAMPLE
-- USING THE SECOND �𝑪𝑪 --

CS 6212 Design and Analysis of Algorithms Branch and Bound

18

Start

• Represent each permutation as X[1:3] like in Backtracking
• Generate the same solution tree in B&B order
• Show 𝐶𝐶 𝑁𝑁 for each generated node N

𝐴𝐴 =
2 4 5
2 7 10
5 3 7

, m1 = m2 = 2, m3 = 3

𝐶𝐶 𝑁𝑁 = csf + �
𝑖𝑖=𝑘𝑘+1

𝑛𝑛

𝑚𝑚𝑖𝑖

C=10

Optimal Solution

X[1]=1 X[1]=2 X[1]=3

𝐶𝐶 = 7 𝐶𝐶 = 9 𝐶𝐶 = 10

X[2]=2 X[2]=3
𝐶𝐶 = 15𝐶𝐶 = 12

X[2]=1 X[2]=3
𝐶𝐶 = 9 𝐶𝐶 = 17

X[2]=1 X[2]=2

𝐶𝐶 = 10 𝐶𝐶 = 15

X[3]=3
𝐶𝐶 = 13

X[3]=2
𝐶𝐶 = 10

Live Nodes: all 3 nodes in Level 1
Live Nodes: X[2]=2, X[2]=3, X[1]=2, X[1]=3

Live Nodes: X[2]=2, X[2]=3, X[2]=1, X[2]=3, X[1]=3
Live Nodes: X[2]=2, X[2]=3, X[3]=3, X[2]=3, X[1]=3

Live Nodes: X[2]=2, X[2]=3, X[3]=3, X[2]=3, X[2]=1, X[2]=2
Live Nodes: X[2]=2, X[2]=3, X[3]=3, X[2]=3, X[3]=2, X[2]=2

OBSERVATIONS

• B&B found the optimal solution faster with the 2nd 𝐶̂𝐶

• That indicates that there can be better 𝐶̂𝐶’s

• Can it be made faster with a better 𝐶̂𝐶?

• Yes: Observe that the 2nd 𝐶̂𝐶 ignored column conflicts in its 𝑚𝑚𝑖𝑖’s

• Let’s create a 3rd 𝐶̂𝐶 that doesn’t ignore column conflicts:

• Take 𝐶̂𝐶(𝑁𝑁) = cost so far +∑𝑖𝑖=𝑘𝑘+1𝑛𝑛 𝑝𝑝𝑖𝑖, where
• 𝑘𝑘 is the level of node 𝑁𝑁,
• 𝑝𝑝𝑖𝑖 is the minimum of row 𝑖𝑖 such that 𝑝𝑝𝑖𝑖 is not in the column of

any of the terms chosen in the partial solution up to node 𝑁𝑁

CS 6212 Design and Analysis of Algorithms Branch and Bound

19

BB APPLIED ON THE EXAMPLE
-- USING THE THIRD �𝑪𝑪 --

CS 6212 Design and Analysis of Algorithms Branch and Bound

20

Start

• Represent each permutation as X[1:3] like in Backtracking
• Generate the same solution tree in B&B order
• Show 𝐶𝐶 𝑁𝑁 for each generated node N

𝐴𝐴 =
2 4 5
2 7 10
5 3 7

,

𝐶𝐶 𝑁𝑁 = csf + �
𝑖𝑖=𝑘𝑘+1

𝑛𝑛

𝑝𝑝𝑖𝑖 , 𝑝𝑝𝑖𝑖 ∉ 𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐(𝑁𝑁)

C=10

Optimal Solution

X[1]=1 X[1]=2 X[1]=3
𝐶𝐶 = 12 𝐶𝐶 = 11 𝐶𝐶 = 10

X[2]=1 X[2]=2

𝐶𝐶 = 10 𝐶𝐶 = 17

X[3]=2
𝐶𝐶 = 10

Live Nodes: all 3 nodes in Level 1

Live Nodes: X[1]=1, X[1]=2, X[2]=1, X[2]=2

Live Nodes: X[1]=1, X[1]=2, X[3]=2, X[2]=2

𝐶𝐶 = A11 + p2 + p3
𝑝𝑝2 = min 𝑟𝑟𝑟𝑟𝑟𝑟 2 𝑛𝑛𝑛𝑛𝑛𝑛 𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓 𝑐𝑐𝑐𝑐𝑐𝑐 1 = 7
𝑝𝑝3 = min 𝑟𝑟𝑟𝑟𝑟𝑟 3 𝑛𝑛𝑛𝑛𝑛𝑛 𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓 𝑐𝑐𝑐𝑐𝑐𝑐 1 = 3
𝐶𝐶 =2+7+3=12

𝐶𝐶 = A13 + A21 + p3
𝑝𝑝3 = min 𝑟𝑟𝑟𝑟𝑟𝑟 3 𝑛𝑛𝑛𝑛𝑛𝑛 𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓 𝑐𝑐𝑐𝑐𝑐𝑐𝑠𝑠 3 𝑎𝑎𝑎𝑎𝑎𝑎 1 = 3
𝐶𝐶 =5+2+3=10

OBSERVATIONS

• B&B found the optimal solution much faster with the 3rd 𝐶̂𝐶

• That is further evidence that better 𝐶̂𝐶’s get us to optimal
solution faster

• The more “compliant” with the constraints 𝐶̂𝐶 is, the better it
seems to be

CS 6212 Design and Analysis of Algorithms Branch and Bound

21

LESSONS LEARNED SO FAR

• B&B searches the solution space (tree) in a BSF-like order

• To speed up the search, it uses a predictor to estimate how likely a
tree node will lead to an optimal solution, and uses the predictor to
know which node to expand next

• The cost-so-far predictor is OK

• There can be many predictors: some better than others

• Predictors need not comply with the constraints of the solution

• But the closer a predictor is to compliance, the faster it gets us to
the optimal solution

• More lessons to come

CS 6212 Design and Analysis of Algorithms Branch and Bound

22

THE GENERAL B&B ALGORITHM
-- SOME POINTS TO KEEP IN MIND FIRST --

• Each solution of the problem is assumed to be expressible as
an array X[1:n] (as was seen in Backtracking).

• An approximate cost function 𝐶̂𝐶 is assumed to have been
defined

CS 6212 Design and Analysis of Algorithms Branch and Bound

23

THE GENERAL B&B ALGORITHM
-- THE PSEUDO-CODE--

CS 6212 Design and Analysis of Algorithms Branch and Bound 24

Procedure B&B()
begin

E: nodepointer;
E := new (node); // the root (start) node
H: heap; //A heap for all the live nodes
while (true) do

if (E is a final leaf) then
// E is an optimal solution
print out the path from E to root;
return;

endif
Expand(E); // E is not an answer node
if (H is empty) then

report that there is no solution;
return;

endif
E := delete-min(H); // next E-node

endwhile
end

• The specifics of Expand(E) vary from
problem to problem, and depend on your
choice of 𝐶𝐶

• The heap is a min-heap for minimization
problems, but a max-heap for
maximization problems (more on
maximization later)

Procedure Expand(E)
begin

1. Generate all the children of E;
2. Compute the 𝐶𝐶 of each child;
3. Insert each child into the heap H;

end

CRITERIA FOR THE CHOICE OF
THE APPROXIMATE COST FUNCTIONS 𝐶̂𝐶 (1/2)

• Definition of the cost function 𝑪𝑪: For every node 𝑁𝑁 in the
solution tree, the cost function 𝑪𝑪(𝑵𝑵) is the cost of the best
solution that goes through node 𝑁𝑁.

• Notes:
• Be careful to distinguish between the “cost function” 𝐶𝐶 and the

“approximate cost function” 𝐶̂𝐶
• 𝐶𝐶(N) will not be computed. It is only a theoretical, mathematical

quantity to be used for analysis, proof, and “inspiration” for
deriving good 𝐶̂𝐶’s

CS 6212 Design and Analysis of Algorithms Branch and Bound

25

N

Start

CRITERIA FOR THE CHOICE OF
THE APPROXIMATE COST FUNCTIONS 𝐶̂𝐶 (2/2)

• Theorem: In the case of minimization problems, if 𝐶̂𝐶 satisfies the following two validity criteria:
1) 𝐶𝐶 𝑁𝑁 ≤ 𝐶𝐶 𝑁𝑁 for every node 𝑁𝑁, and

2) 𝐶𝐶 𝑁𝑁 = 𝐶𝐶 𝑁𝑁 for every answer node (final leaf) node 𝑁𝑁,

then the first expanding node (best-𝐶̂𝐶 node) that happens to be a final leaf corresponds to an
optimal solution.

• Proof:
a. Assume 𝐶𝐶 satisfies the two conditions of the theorem
b. Let 𝐸𝐸 be the E-node that happens to be a final leaf (where B&B algorithm stops)
c. Need to prove that 𝑪𝑪 𝑬𝑬 ≤ 𝑪𝑪 𝑵𝑵 for every live node 𝑁𝑁
d. 𝐶𝐶 𝐸𝐸 = 𝐶𝐶(𝐸𝐸) by condition (2) of the theorem and because E is a final leaf
e. 𝐶𝐶 𝐸𝐸 ≤ 𝐶𝐶(𝑁𝑁) for every live node 𝑁𝑁, because 𝐸𝐸 is the expanding node, that is, the minimum-𝐶𝐶 node

at the moment it is chosen (recall that the algorithm chooses E to be the the minimum-𝐶𝐶 node)
f. 𝐶𝐶 𝑁𝑁 ≤ 𝐶𝐶 𝑁𝑁 for every node 𝑁𝑁 (and thus for every live node) by condition (1) of the theorem
g. Therefore, 𝐶𝐶 𝐸𝐸 = 𝐶𝐶 𝐸𝐸 ≤ 𝐶𝐶 𝑁𝑁 ≤ 𝐶𝐶 𝑁𝑁 for every live node𝑁𝑁, (by d, e and f, respectively)
h. Therefore, 𝑪𝑪 𝑬𝑬 ≤ 𝑪𝑪 𝑵𝑵 . Q.E.D.

CS 6212 Design and Analysis of Algorithms Branch and Bound

26

start

EN

Since 𝐶𝐶 𝑁𝑁 ≤ 𝐶𝐶 𝑁𝑁 , we say that
𝐶𝐶 is an underestimate of 𝐶𝐶

OPTIMALITY OF THE B&B SOLUTION

• If 𝐶̂𝐶 satisfies the following two validity criteria, then the B&B algorithm
solution is optimal

• That is because it returns the solution corresponding to the first
expanding node (best-𝐶̂𝐶 node) that happens to be a final leaf

• By last theorem, that solution is optimal

• Therefore, to design an optimality-guaranteeing B&B algorithm, simply
derive and use in the B&B algorithm a 𝐶̂𝐶 that satisfies the two validity
criteria

• So, the crux of the design process is
• the derivation of a 𝐶𝐶, and

• the proof that it satisfies the two validity criteria

CS 6212 Design and Analysis of Algorithms Branch and Bound

27

THE COST FUNCTION C(N)
OF THE JOB ASSIGNMENT PROBLEM

• Let 𝑁𝑁 be a node at level 𝑘𝑘, and X 1:𝑘𝑘 be the first 𝑘𝑘 entries
assigned on the path from the root to node 𝑁𝑁 in the solution tree

• 𝐶𝐶 𝑁𝑁 = the cost of the best (min) solution that goes through node 𝑁𝑁

• 𝐶𝐶 𝑁𝑁 = cost so far + the cost of the best (min) continuation from 𝑁𝑁

• 𝐶𝐶 𝑁𝑁 = ∑𝑖𝑖=1𝑘𝑘 𝐴𝐴𝑖𝑖,𝑋𝑋 𝑖𝑖 +
min ∑𝑖𝑖=𝑘𝑘+1𝑛𝑛 𝐴𝐴𝑖𝑖,𝑋𝑋 𝑖𝑖 for all possible valid fillings of X[𝑘𝑘+ 1:𝑛𝑛]}

• Computing the min in the 2nd part of 𝐶𝐶 𝑁𝑁 is very costly because
the number of entities to minimize over is exponential

• But, in any case, the B&B algorithm doesn’t use 𝐶𝐶 𝑁𝑁

CS 6212 Design and Analysis of Algorithms Branch and Bound

28

EXERCISES

• Exercise 1: Prove that the first 𝐶̂𝐶 we defined for the Job
Assignment Problem satisfies the two conditions of the theorem.

• Exercise 2: Prove that the second 𝐶̂𝐶 we defined for the Job

Assignment Problem satisfies the two conditions of the theorem.

• Exercise 3: Prove that the third 𝐶̂𝐶 we defined for the Job
Assignment Problem satisfies the two conditions of the theorem.

• Hint: Use the expression of 𝐶𝐶 𝑁𝑁 in the previous slide

CS 6212 Design and Analysis of Algorithms Branch and Bound

29

IMPLEMENTATION OF THE B&B JOB
ASSIGNMENT ALGORITHM (1)

• We saw that the B&B algorithm needs an Expand procedure that
depends on the problem and on the choice of the 𝐶̂𝐶

• We need to

• define the full record of a node, and

• fully implement the Expand procedure

CS 6212 Design and Analysis of Algorithms Branch and Bound

30

Procedure Expand(E)
begin

1. Generate all the children of E;
2. Compute the 𝐶𝐶 of each child;
3. Insert each child into the heap H;

end

IMPLEMENTATION OF THE B&B JOB
ASSIGNMENT ALGORITHM (2)

• Node record:

• Every node corresponds to something like X[i]=j, which signifies that
employee i is assigned to job j

• Every node must store its 𝐶̂𝐶 value

• Every node must point to its parent so that

• when an optimal leaf is found,

the path from that leaf to the

root can be traced and printed

out as the optimal solution

CS 6212 Design and Analysis of Algorithms Branch and Bound

31

Record node
begin

parent: nodepointer;
i: integer; // employee i; X[i]=j
j: integer; // job j assigned to person i
cHat: real;

end

Start

X[1]=1 X[1]=2 X[1]=3
𝐶𝐶 = 12 𝐶𝐶 = 11 𝐶𝐶 = 10

X[2]=1 X[2]=2
𝐶𝐶 = 10 𝐶𝐶 = 17

X[3]=2
𝐶𝐶 = 10

IMPLEMENTATION OF THE B&B JOB
ASSIGNMENT ALGORITHM (3)

• Let’s use the second 𝐶̂𝐶
• 𝐶̂𝐶(𝑁𝑁) = cost so far +∑𝑖𝑖=𝑘𝑘+1

𝑛𝑛 𝑚𝑚𝑖𝑖, where 𝑘𝑘 is the level of node 𝑁𝑁, and 𝑚𝑚𝑖𝑖 is the
minimum of row 𝑖𝑖 of the cost matrix 𝐴𝐴

• Observe that if 𝑁𝑁 is a pointer to a node, then

𝑁𝑁. 𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐 = 𝑁𝑁.𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝. 𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐 + 𝐴𝐴[𝑁𝑁. 𝑖𝑖,𝑁𝑁. 𝑗𝑗] −𝑚𝑚𝑁𝑁.𝑖𝑖

• It should be easy to write a piece of code that finds the minimum

𝑚𝑚𝑖𝑖 for row 𝑖𝑖, for all 𝑖𝑖 (that is a little exercise for you)

• So assume we have the 𝑚𝑚𝑖𝑖’s

CS 6212 Design and Analysis of Algorithms Branch and Bound

32

IMPLEMENTATION OF THE B&B JOB
ASSIGNMENT ALGORITHM (4)

CS 6212 Design and Analysis of Algorithms Branch and Bound

33

Procedure Expand(in: E, A[1:n,1:n], m[1:n]; in/out: H) // m is assumed computed; H is the heap
begin

S[1:n]: Boolean; // S is a bitmap set initialized to 0. It’ll contain all the jobs that have been
// assigned by the partial path from the root to E

N, p: nodepointer;
p := E;
while (p is not the root) do // walk from E to root finding the assigned jobs

S[p.j] := 1; // job p.j has already been assigned (to employee p.i)
p := p.parent;

endwhile
for j=1 to n do

if S[j] = 0 then // job j unassigned, and so a new child of E will be created for it
N := new (node); // a new child node for person E.i+1 and job j
N.i := E.i + 1; N.j := j; N.parent:= E;
N.cHat = E.cHat + A[N.i,N.j] - m[N.i];
Insert(N,H); // insert N into heap H

endif
endfor

end

Start

X[1]=1 X[1]=2 X[1]=3
𝐶̂𝐶 = 12 𝐶̂𝐶 = 11 𝐶̂𝐶 = 10

X[2]=1 X[2]=2
𝐶̂𝐶 = 10 𝐶̂𝐶 = 17

X[3]=2
𝐶̂𝐶 = 10

EXERCISES

• Exercise 4: Give an Expand procedure for the third 𝐶̂𝐶 of the Job
Assignment problem

CS 6212 Design and Analysis of Algorithms Branch and Bound

34

HOW TO FIND A GOOD 𝐶̂𝐶
-- A RULE OF THUMB --

1. Express 𝐶𝐶(𝑁𝑁) mathematically (recall that 𝐶𝐶(𝑁𝑁) is the cost of the min-cost constraints-
compliant solution that goes through 𝑁𝑁)

2. Relax some of the constraints (as little as possible) for the continuation of the
solution from node 𝑁𝑁, and compute a new 𝐶𝐶(𝑁𝑁) under the new relaxed constraints

3. Take 𝐶𝐶 to be the new 𝐶𝐶(𝑁𝑁)

• Notes:
• You need to relax the constraints enough so that the new 𝐶𝐶(𝑁𝑁) can be computed fast
• But don’t relax too much because the closer 𝐶̂𝐶 is to the original 𝐶𝐶, the fewer nodes need to be

generated in the solution tree, and vice versa
• Because 𝐶𝐶(𝑁𝑁) is the min-cost under tighter constraints, and 𝐶̂𝐶(𝑁𝑁) is the min-cost under loser

constraints, 𝐶𝐶 𝑁𝑁 ≤ 𝐶𝐶(𝑁𝑁), satisfying validity criterion (1)
• Because at answer nodes (i.e., final leaves) E there is only one solution that goes through E,
𝐶𝐶 𝐸𝐸 = 𝐶𝐶(𝐸𝐸), satisfying validity criterion (2)

• Therefore, the rule of thumb given above guarantees a valid 𝐶̂𝐶

CS 6212 Design and Analysis of Algorithms Branch and Bound

35

B&B FOR MAXIMIZATION PROBLEMS

• In the case of maximization problems
• there is a profit (instead of cost) associated with each solution, and

• we are interested in finding the solution corresponding to the maximum profit

• Instead of cost function 𝐶𝐶 and approximate cost function 𝐶̂𝐶, we talk about profit
function 𝑃𝑃 and approximate profit function �𝑃𝑃

• The theorem will have to be slightly modified so the validity criteria become
1) �𝑃𝑃 𝑁𝑁 ≥ 𝑃𝑃 𝑁𝑁 for every node 𝑁𝑁, and

2) �𝑃𝑃 𝑁𝑁 = 𝑃𝑃 𝑁𝑁 for every answer node (final leaf) node 𝑁𝑁

• The same rule of thumb applies for deriving �𝑃𝑃 𝑁𝑁 from 𝑃𝑃 𝑁𝑁 , by relaxing the
constraints as little as possible to make the computation of 𝑃𝑃 𝑁𝑁 fast

CS 6212 Design and Analysis of Algorithms Branch and Bound

36

�𝑃𝑃 𝑁𝑁 is called an
overestimate of 𝑃𝑃 𝑁𝑁

LESSONS LEARNED SO FAR
• B&B searches the solution space (tree) in a modified BSF order

• To speed up the search, B&B uses a predictor 𝐶̂𝐶 to estimate the promise of a node, and
always selects the min-𝐶̂𝐶 live node to expand next

• The cost-so-far 𝐶̂𝐶 is OK, and many predictors 𝐶̂𝐶 exist: some better than others

• 𝐶̂𝐶 need not comply with the constraints of the solution

• The closer 𝐶̂𝐶 is to 𝐶𝐶, the faster it gets to the optimal solution

• If 𝐶̂𝐶 satisfies two validity criteria, then B&B yields an optimal solution

• To derive a provably valid 𝐶̂𝐶, set 𝐶̂𝐶 = the cost function 𝐶𝐶 under relaxed constraints

• B&B is an algorithm, not a template

• To design a B&B algorithm for a problem, express 𝐶𝐶, derive from it a 𝐶̂𝐶, prove the two
validity criteria for your 𝐶̂𝐶, and implement the Expand procedure

• Maximization B&B works similarly: Replace cost by profit, ≤ by ≥, min by max, and min-
heap by max-heap
CS 6212 Design and Analysis of Algorithms Branch and Bound

37

1) 𝐶𝐶 𝑁𝑁 ≤ 𝐶𝐶 𝑁𝑁 ∀ node 𝑁𝑁,
2) 𝐶𝐶 𝑁𝑁 = 𝐶𝐶 𝑁𝑁 ∀ final leaf 𝑁𝑁

Relax the constraints just enough to make 𝐶𝐶
computation fast enough (polynomial)

A MAXIMIZATION APPLICATION OF B&B
-- THE 0/1 KNAPSACK PROBLEM --

• Input:
• Items: 1, 2, 3, … , n
• Weights: 𝑊𝑊1 𝑊𝑊2 𝑊𝑊3 … , 𝑊𝑊𝑛𝑛

• Prices: 𝑃𝑃1 𝑃𝑃2 𝑃𝑃3 … , 𝑃𝑃𝑛𝑛
• Capacity: 𝐶𝐶

• Output: Which items to take (in whole) such that the total of the taken weights is ≤ 𝐶𝐶,
and the total of the prices of the taken items is maximized.

More formally:
• ∀𝑖𝑖, let 𝑥𝑥𝑖𝑖 = 1 if item 𝑖𝑖 is taken, 0 0therwise.
• Output: Find 𝑥𝑥1 , 𝑥𝑥2, … ,𝑥𝑥𝑛𝑛 to maximize Σ𝑖𝑖=1

𝑛𝑛 𝑥𝑥𝑖𝑖𝑃𝑃𝑖𝑖 such that Σ𝑖𝑖=1
𝑛𝑛 𝑥𝑥𝑖𝑖𝑊𝑊𝑖𝑖 ≤ 𝐶𝐶

• Task: Write a B&B algorithm for solving this problem

CS 6212 Design and Analysis of Algorithms The Greedy method

38

𝑃𝑃𝑖𝑖 is the price of the
whole item 𝑖𝑖, not the
price per pound

A MAXIMIZATION APPLICATION OF B&B
-- THE 0/1 KNAPSACK PROBLEM --

• The profit function 𝑃𝑃(𝑁𝑁) ≝ the profit of the best solution that goes thru node 𝑁𝑁

• 𝑃𝑃(𝑁𝑁) = (the profit so far) + (the best 0/1 profit that can be gained from the remaining
items 𝑘𝑘 + 1, 𝑘𝑘 + 2, … ,𝑛𝑛)

• To derive an approximate profit function �𝑃𝑃 𝑁𝑁 , relax the 0/1 constraint in
(the best 0/1 profit that can be gained from the remaining items 𝑘𝑘 + 1,𝑘𝑘 + 2, … ,𝑛𝑛)

into the regular knapsack constraint (where you can take fractions of items)

• Then, the relaxed 𝑃𝑃(𝑁𝑁) = (the profit so far) + (the best regular knapsack profit that can
be gained from the remaining items 𝑘𝑘 + 1,𝑘𝑘 + 2, … , 𝑛𝑛)

• Take �𝑃𝑃 𝑁𝑁 = the relaxed 𝑃𝑃(𝑁𝑁) = (profit so far) + (the greedy solution of the regular
knapsack problem for the remaining items 𝑘𝑘 + 1,𝑘𝑘 + 2, … ,𝑛𝑛 where the capacity is the
remaining capacity), where 𝑁𝑁 is a node at level 𝑘𝑘.

• Since �𝑃𝑃 is derived using the relaxation rule, it is easy to prove that it satisfies the 2
validity criteria for maximization

CS 6212 Design and Analysis of Algorithms Branch and Bound

39

The greedy solution is fast to compute,
so it is fast to compute �𝑃𝑃 𝑁𝑁

OTHER APPLICATIONS OF B&B
-- IN AI, AND IN NEAR-OPTIMIZATION --

• B&B is used heavily in classical Artificial Intelligence, under a
different name: the A* algorithm

• When an optimal solution is costly to find, near-optimal solutions
may be adequate. Different methods can be used to find near-
optimal (or sub-optimal) solutions:

• The Greedy method (fast but solution may not be good enough)

• B&B, stopping when solution is good enough or when a pre-set time
limit expires

• This solution can be better (closer to optimal) than the greedy solution

• This approach allows for progressively better solutions with more
execution time

CS 6212 Design and Analysis of Algorithms Branch and Bound

40

	CS 6212 Design and Analysis of Algorithms��Lecture: branch and bound
	Objectives of this Lecture
	outline
	introduction
	Laying the ground work�-- Illustration on the Job Assignment Problem --
	the Job Assignment Problem�-- An example --
	the Job Assignment Problem�-- brute-force method --
	the Job Assignment Problem�-- brute-force method on the example -
	What is wrong with brute force?
	Main Idea�-- using a predictor --
	the Job Assignment Problem�-- Predictor illustration: cost so far --
	Main Idea�-- How does B&B use the predictor --
	BB applied on the example
	Terminology
	Lessons learned so far
	Observations
	A better 𝐶
	BB applied on the example�-- Using the second 𝑪 --
	Observations
	BB applied on the example�-- Using the third 𝑪 --
	Observations
	Lessons learned so far
	The general b&b algorithm�-- some points to keep in mind first --
	The general b&b algorithm�-- the pseudo-code--
	Criteria for the Choice of �the Approximate Cost Functions 𝐶 (1/2)
	Criteria for the Choice of �the Approximate Cost Functions 𝐶 (2/2)
	Optimality of the B&B solution
	The Cost function C(N) �of the Job assignment problem
	Exercises
	Implementation of the B&B Job Assignment Algorithm (1)
	Implementation of the B&B Job Assignment Algorithm (2)
	Implementation of the B&B Job Assignment Algorithm (3)
	Implementation of the B&B Job Assignment Algorithm (4)
	Exercises
	How to find a good 𝐶 �-- a rule of thumb --
	B&B for Maximization problems
	Lessons learned so far
	A maximization application of B&B�-- The 0/1 knapsack problem --
	A maximization application of B&B�-- The 0/1 knapsack problem --
	Other applications of B&B�-- in AI, and in near-optimization --

